

*Tokenizing and parsing

*Regular expression functions
* Advanced array functions

Tokenizing and parsing

* The process of breaking up a long string into words is
called Tokenizing.

* Php provides a special function for this purpose called
strtok().

* Syntax:

* Strtok(stringi, string2)

e String1 - string to be broken up

e String2 - string containing all the delimiters.

" Regular expression functions

* Regularexpressions (or regex) are patterns for
string matching, with special wildcards that can match
entire portions of the target string.

* There are two broad classes of regular expression

e POSIX (extended) regex

e Perl-compatible regex.

T ———————

#POSIX-style regular expressions are
ultimately descended from the
regex pattern-matching machinery
used in Unix command-line shells.

Perl-compatible regex is a more
direct imitation of regular
expressions in Perl.

_Rules for POSIX“-E’Eer“F“é"g"Lﬂa{/

expressions

* Characters that are not special are matched literally.
The letter a in a pattern, for example, matches the
same letter in a target string.

* The special character * matches the beginning of a
string only, and the special character $ matches the
end of a string only.

* The special character . matches any character.

%‘5&% = - ——
/ = —_— e ———
e

—

o The special character * matches zero or more instances
of the previous regular expression, and + matches one
or more instances of the previous expression.

A set of characters enclosed in square brackets
matches any of those characters — the pattern [ab]

matches either a or b. You can also specifya range of
characters in brackets by using a hyphen — the
pattern [a-c] matches a, b, or c.

Special characters that are escaped with a backslash
(\) lose their special meaning and are matched
literally.

e ——

* function ereg(stringi,string2), which takes as
arguments a pattern string and a string to match
against.

* We can use an ereg() call to build a test function for
our kind of web address.

————

~ e sa=array("hjhjh.6567@@@@.ibm.com","WWW.java.sun.com",

"WWW.zend.com","WWW.IBM.COM","WWW java.sun.com");
* function arr($s)
o {

* return(ereg('""WWW\\.[a-z]+\\.com$',$s));
[) }

While($t=array_pop($a))

o |

o if(arr(st))

o print("\"s$t\" is a simple dot_com
");

° else

» print("\"$t\" is a not simple dot_com
");

> 7>

2 localhost
" File Edit View Favorites Tools Help

)(@ISecureSearch WMcAfee € Rd
B v B 2 # v Pager Safey Tookv @~ &)

"WWW java.sun.com” is a not simple dot_com
"WWW.IBM.COM" is a not simple dot_com
"WWW.zend.com" is a simple dot_com

"WWW java.sun.com” is a not simple dot_com
"hjhjh.6567@ @ @@.ibm.com" is a not simple dot_com

5% v

"'www\.[a-z]+\.com$

In this expression we have the ‘** symbol, which says
that the www portion must start at the beginning
of the string.
Then comes a dot (.), preceded by a backslash that says we
really want a dot, not the special . wildcard character. Then

we have a bracket-enclosed range of all the lowercase
alphabetic letters.

The following + indicates that we are willing to match any
number of these lowercase letters in a row, as long as we
have at least one of them.

Then another literal ., the com, and the special $ that says
that com is the end of it.

~ POSIX Regular Expressig‘nFuﬁﬁbctions

ereg(stri,str2) - returns TRUE if the match was
successful and FALSE otherwise.

eregi() - Identical to ereg(), except that letters in regular
expressions are matched in a case-independent way.

ereg_replace(stri,str2,str3) - Takes three arguments: a
POSIX regular expression pattern, a string to do
replacement with, and a string to replace into. The
function scans the third argument for portions that
match the pattern and replaces them with the second
argument. The modified string is returned.

/ o —— R ———

4. eregi_replace() - Identlcal to ereg_replace(),
except that letters in regular expressions are
matched in a case-independent way.

split() - Takes a pattern, a target string, and an

optional limit on the number of portions to split
the string into. Returns an array of strings
created by splitting the target string into chunks
delimited by substrings that match the regular
expression.

spliti() - Case-independent version of split().

Perl-Compatible Regular Expressions
® The Perl compatible pattern:

/pattern/

* matches any string that has the string (or substring)
pattern in it.

- preg_match() - Takes a regex pattern as first argument, a
string to match against as second argument, and an
optional array variable for returned matches. Returns o if
no matches are found, and 1 if a match is found.

» preg_match_all() - Like preg_match(), except that it
makes all possible successive matches of the pattern in the
string, rather than just the first. The return value is the
number of matches successfully made.

* preg_split() Takesa pattern as first argument and a
string to match as second argument. Returns an array
containing the string divided into substrings, split
along boundary strings matching the pattern.

—preg_replace() Takes a pattern, a replacement string, and a string to
modify. Returns the result of replacing every matching portion of the
modifiable string with the replacement string.

preg_replace_callback() - Like preg replace(), except that the second
argument is the name of a callback function, rather than a replacement
string. This function should return the string that is to be used as a
replacement.

preg_grep() - Takes a pattern and an array and returns an array of the
elements of the input array that matched the pattern. Surviving values
of the new array have the same keys as in the input array.

preg_quote() - A special-purpose function for inserting escape
characters into strings that are intended for use as regex patterns. The
only required argument is a string to escape; the return value is that
string with every special regex character preceded by a backslash.

